Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion

نویسندگان

  • Guillaume Cordonnier
  • Jean Braun
  • Marie-Paule Cani
  • Bedrich Benes
  • Eric Galin
  • Adrien Peytavie
  • Eric Guérin
چکیده

At large scale, landscapes result from the combination of two major processes: tectonics which generate the main relief through crust uplift, and weather which accounts for erosion. This paper presents the first method in computer graphics that combines uplift and hydraulic erosion to generate visually plausible terrains. Given a user-painted uplift map, we generate a stream graph over the entire domain embedding elevation information and stream flow. Our approach relies on the stream power equation introduced in geology for hydraulic erosion. By combining crust uplift and stream power erosion we generate large realistic terrains at a low computational cost. Finally, we convert this graph into a digital elevation model by blending landform feature kernels whose parameters are derived from the information in the graph. Our method gives high-level control over the large scale dendritic structures of the resulting river networks, watersheds, and mountains ridges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales

Since the late nineteenth century, it has been debated whether rivers or glaciers are more effective agents of erosion1. The dramatic landscapes associated with glaciated terrain have often led to the argument that glaciers are more erosive than rivers, and recent studies have documented the topographic signature of an ice-controlled limit of mountain height known as the ‘glacial buzz-saw’2,3. ...

متن کامل

Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison

[1] Mechanistic theories of fluvial erosion are essential for quantifying large-scale orogenic denudation. We examine the topographic implications of two leading classes of river erosion model, detachment-limited and transport-limited, in order to identify diagnostic and testable differences between them. Several formulations predict distinctly different longitudinal profile shapes, which are s...

متن کامل

Response of a steady-state critical wedge orogen to changes in climate and tectonic forcing

The theories of critical orogenic wedges and fluvial erosion are combined to explore the interactions between tectonics, erosion, and climate. A model framework is developed which allows the derivation of an exact analytical scaling relationship for how orogen width, height, and rock uplift rate vary as a function of accretionary flux and precipitation rate. Compared to a model with prescribed ...

متن کامل

Coupling glacial erosion and tectonics at active orogens: A numerical modeling study

[1] Climate change indirectly alters the distribution of tectonic uplift at active orogens by modifying the action of surface processes, which in turn alters mountain topography. The impact of alpine glaciation on tectonic activity is explored here. The predictions of previous analytical, critical wedge models are compared with the output of a numerical model that explicitly couples rock uplift...

متن کامل

Uplift, Shortening, and Steady State Topography in Active Mountain Belts

We present a tectonic, surface process model used to investigate the role of horizontal shortening in convergent orogens and the effects on steady-state topography. The tectonic model consists of a specified velocity field for the Earth’s surface and includes a constant uplift rate and a constant horizontal strain rate which varies to reflect the relative importance of frontal accretion and und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016